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ABSTRACT 

Optical Study of the Electronic Band Structure of Diamond 

by 

Richard Arthur Roberts 

Absolute normal incidence ref lect ion measurements at both room 

and l iquid nitrogen temperatures have been taken on a polished Type I 

and both cleaved and polished Type IIa dimond crys ta l s  i n  the range 

from 5.5 t o  11.5 eV.  

perature work t o  eliminate o i l  contamination of the c rys ta l  surface. 

Additional room temperature measurements up t o  31 e V  w e r e  made on the 

polished Type I and cleaved Type IIa crystals .  

A Vacion pumping system w a s  used i n  the low t e m -  

The Kramers-Kronig analysis used i n  this research t o  determine the 

phase angle d i f f e r s  from previous work i n  as much as no extrapolation 

of data outside the measured high energy l i m i t  w a s  required. 

l e c t r i c  function l w a s  obtained over a broad energy range (5.5 - 31 eV) 

and structure w a s  observed at 7.3, 7.8, 12.2 and 23 eV. The 7.3 and 

12.2 peaks, assigned t o  direct  interband t rans i t ions  on the basis of 

recent band calculations, are  i n  agreement with ea r l i e r  measurements. 

Evidence tha t  the 23 eV peak is not i n t r in s i c  t o  diamond i s  presented. 

New low temperature observations on the absorption threshold indicate 

tha t  the previously suggested model based on a hybrid exciton i s  prob- 

ably incorrect.  

The die- 

The conclusion of t h i s  research i s  tha t  the direct  
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band edge i s  near 7 .3  eV. 

dent 7.8 eV peak can be explained as due t o  a change i n  the energy bands 

near the r point although an exciton interpretat ion i s  not excluded. 

Agreement of the present research with the latest previous 

The previously unobserved temperature depen- 

measurement i s  remarkably good considering tha t  different samples 

and methods of analysis were used. 

vi 
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I. IN'I'RODUCTION 

Detailed analysis of optical  spectra has provided the most impor- 

t a n t  means of arr iving at an accurate description of the electronic 

structure of free atoms and molecules. 

damental opt ical  spectra t o  study the electronic  structure of the  so l id  

state had been thwarted by (a) lack of sui table  spectra f o r  analysis, 

and (b)  lack of a guiding theoret ical  scheme fo r  interpretat ion of the 

spectra. 

Unti l  recently the  use of fun- 

For insulating materials the electronic states within 1 eV of the 

valence band maximum or conduction band minimum (band edges) may be 

called infrared states i n  contrast t o  u l t rav io le t  states which refer 

t o  those states within 1 t o  10 e V  of the band edges. 

experimental studies were confined t o  the  infrared states using infrared 

absorption, de Haas-van Alphen o r  cyclotron resonance techniques. These 

experiments give the electron effect ive mass which i n  turn  gives infor- 

mation about t he  shape of the band edges. 

v i e w  t h i s  w a s  unsatisfactory as band calculations give all the  elec- 

t ronic  states over as much as 30 e V  from the  edges. 

Unti l  1959 most 

From a theore t ica l  point of 

Philipp and Taft '  were the first t o  extend the  measurements over 

a broader range of energy. 

G e  and S i  crystals ,  whose infrared states had been extensively studied, 

by making ref lect ion measurements over the range f'rom 1 t o  10 eV. 

U s i n g  the  Kramers-Kronig relations they derived cl and c2, the  com- 

ponents of t he  complex d ie lec t r ic  function, over the same energy range. 

They examined the u l t rav io le t  spectra of 
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L 

2 Phi l l ips  realized t h a t  i f  the interband osc i l l a to r  strength 

occurring i n  the theore t ica l  expression f o r  

k then the structure i n  i s  due t o  s ingular i t ies  i n  the electronic 

jo in t  density of states function. 

bands he introduced the concept of c r i t i c a l  points i n  the  jo in t  den- 

s i t y  of states as the source of s ingular i t ies  and hence structure i n  

c2. 

framework fo r  interpretat ion of the electronic  spectra of solids.  

var ies  smoothly with 
€2 

A 

By examining the theoret ical  energy 

This concept, which is  now w e l l  accepted, provides the  necessary 

Most electron energy band calculations a re  based on the Bloch 

model of a sol id  which assumes electrons moving independently through 

a periodic potential .  

tool,  but, i n  fac t ,  electrons are not independent and i n  many cases 

t h e i r  interactions cannot be neglected. Many-body problems are inher- 

en t ly  d i f f i cu l t  theoret ical ly  and t h e i r  e f fec t  i s  generally treated as 

a perturbation of the Bloch model. Various theore t ica l  approximations 

axe i n  use today and experiments a re  crucial  i n  determining which 

approximations are valid. 

because the  most accurate band calculations using the  Bloch model r e l y  

on making a parametric f i t  with experimental data. 

This model has been our most useful theore t ica l  

Reliable experiments are  also importaat 

I n  this research the  opt ical  constants of diamond, i n  the energy 

range from 5.5 - 11.5 e V  a t  l iquid nitrogen t,emperature and f rom 5.5 - 
31 eV at room temperature, were obtained by reflectance measurements 

using the Kramers-Kronig analysis. 

terms of recent band structure calculations. 

The r e s u l t s  were interpreted i n  
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The extensive work done on s i l i con  and germanium makes the study 

of diamond a logical  step, as carbon i s  the f irst  element i n  the same 

column as Ge and Si. 

bonding i s  common t o  a l l  three materisls, interpretat ion of spectral  

r e su l t s  on diamond can r e ly  heavily on the information obtained for  

Ge and Si. 

Since the diamond crys ta l  structure and covalent 

Diamond i s  of especial theoretical  in te res t  bacause of all the 

covalent materials it should have the simplest and mst basic struc- 

ture. 

uncertainty i n  the atomic electron core potential, should be greatest 

fo r  diamond whose core contains only the completed 1s shel l .  

I n  addition, the  accuracy of band calculations, affected by the 

The present work differs from earlier e f fo r t s  i n  several respects. 

Both low temperature and room temperature measurements were extended 

t o  higher photon energy. 

controversy existing over possible structure occurring i n  these regions. 

I n  addition considerable ca re  was taken t o  ensure cleanliness of the 

sample surface during low temperature measurements. This was accom- 

plished by evacuating the reflectometer separately from the monochro- 

mator using a Vacion pumping system thus avoiding l i ke ly  contamination 

of the  c rys ta l  surface by diffusion pump o i l .  using improved reso- 

lu t ion  a higher density of data points w a s  obtained than i n  previous 

work thus giving more reliable information about f ine  s t ructure  i n  

reflectance. 

This extension is  significant because of the  
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11. REVIEW OF PRL”VI0US RESEARCH ON DIAMOND 

A. GESERALPROPERTLES 

X-ray diffraction has shown the c rys ta l  structure of diamond t o  

be cubic. The structure can be considered as two interpenetrating 

fcc  crystals  with or igins  at  (O,O,O) and ($,$,$). The l a t t i c  con- 

s tan t  or cube edge i s  3.57 A and the nearest neighbor separation i s  

1.54 8. 

0 

2 2 2  The electronic configuration of the carbon atom is  Is 2s 2p 

and i n  the crys ta l  the inner core K electrons remain re la t ive ly  un- 

disturbed while the  four L electrons pair up with nearest neighbor 

electrons t o  form tetrahedrally oriented covalent bonds. 

I n  1934 Robertson e t  al.314 reported marked differences i n  the 

opt ica l  and photoconductive properties of various diamond specimens. 

They classif ied diamonds in to  Type I or Type I1 according t o  t h e i r  

d i f fe ren t  u l t rav io le t  and infrared absorption properties. The rarer 

Type I1 diamond (approximately 546 of those occurring naturally) has 

infrared absorption bands between 3 and 6 

edge near 2250 A. 

near 300 A and additional infrared absorption bands exist. 

and a sharp absorption 
0 

For Ty-pe I diamonds the  absorption edge occurs 
0 

The ’Type 

I1 diamonds can be fur ther  subdivided in to  Types IIa and IIL, where 

those classi f ied as IIb were found t o  have a pronounced e l e c t r i c a l  

conductivity and showed phosphorescence when illuminated by u l t rav io le t  

radiation. 
5 20 

Kaiser and Bond found nitrogen concentrations as high as 4 x 10 

nitrogen atoms per cm3 i n  diamonds of Ty-pe I. Density measurements 
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indicated tha t  t he  nitrogen occupies a subst i tut ional  position i n  the 

diamond l a t t i c e .  

trogen content could be correlated with the Type I characterist ics;  

namely, additional infrared absorption near 8u, the  u l t rav io le t  ab- 

sorption above 2250 A, and the larger  lat t ice constant. 

pur i t ies  are present but not i n  sufficient concentration t o  account 

f o r  the opt ica l  o r  e l ec t r i ca l  properties character is t ic  of Type I 

diamonds. 

Kaiser and Bond quantitatively showed tha t  the  n i -  

0 
Other i m -  

The sharp r i s e  i n  the ul t raviolet  absorption of me I1 diamonds 
0 

at 2250 A (5.6 eV) i s  considered as the true absorption edge of pure 

diamond. 

t o  the nitrogen concentration and thus the absorption of Type I dia- 

monds for  

t rue  i n t r i n s i c  absorption edge of diamond. 

The sh i f t  i n  absorption t o  longer wavelengths i s  proportional 

0 
> 2250 A m u s t  be considered as an ex t r ins ic  tail on the  

B. ELM=TRONIC STATE CALCULA!I!IONS 

6 The first energy band calculation of diamond was done by Herman 

i n  1954, using the method of orthogonalized plane waves first proposed 

by Herring.7 He found the maximum i n  the valence band t o  be at  the 

center of the  Bril louin zone or r point while the minimum i n  the con- 

duction band was not at r but p w t  way along the [1,0,0] direction. 

Kleinman and Phillips' showed that Herman's r e s u l t s  were nearly 

self consistent,  

"effective potential" they found results i n  close agreement with those 

of Herman. 

By an alternate calculation procedure using an 
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9 I n  1962 Redei calculated the conduction band i n  diamond by ex- 

panding i t s  eigenfunctions i n  terms of plane waves made orthogonal t o  

the Is band (Om method) - and the valence band. The minimum i n  the  con- 

duction band was  found t o  be about halfway along the [ 1,0,01 direction. 

I n  order t o  confirm the OPW band calculations by an al ternate  

method Cohan, Pugh, and Tredgold'' worked out the valence and con- 

duction bands i n  diamond by a tight-binding procedure. 

shape of the bands from this tight-binding method agreed with the OPW 

calculations but the width of the valence band, 52 eV, and the energy 

gap, 9.8 eV, were too large i n  comparison with experiment. 

workers found both the top of the valence band and the bottom of the  

conduction band located at the center of the zone contrary t o  previous 

calculations. 

The general 

These 

Recently (1966) Saslow, Bergstresser and Cohenll (SBC) using an 

Ehpirical Pseudopotential Method made yet another band calculation. 

Th i s  method uses experimental resu l t s  t o  calculate the  bands. 

ample i n  diamond the experimentally determined l a t t i c e  constant of 

3.57 i, the conduction band minhum of 5.48 e V  at (0.77,0,0) and the 

12.9 eV separation of X4 + X1were used. 

found i n  the  neighborhood of r .  

For ex- 

Several c r i t i c a l  points were 

I n  a paper presented a t  the International Conference on the  

Physics of Semiconductors, Herman12 and others presented a new band 

structure obtained by adding 

principles calculation. The 

experimental indirect  gap of 

small empirical corrections t o  a first 

theoretical  model w a s  adjusted t o  give the  

r + A - 5.47 e V .  25' 1- 
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For reference purposes and fur ther  discussion i n  following chap- 

ters the most recent band calculations are presented i n  Figure 1 which 

shows a comparison of Herman’s work with t h a t  of SBC. 

C. INTRINSIC O P T I C a  PROPERTIES AND ELECTRONIC STRUCTURE 

The extensive l i t e r a tu re  dealing with the infrared and visible 

opt ical  properties of diamond has been summarized i n  a monograph.$y: 

Champion.13 Although these studies are  useful i n  understanding many 

impurity sensitive phenomena they have not shed much l igh t  on the 

fundamental problem of the electronic structure of diamond. 

The first opt ical  study of t he  in t r in s i c  diamond spectrum w a s  

t ha t  of Philipp and Taft.14 They determined the opt ical  constants and, 

i n  particulas, c2 in the range 5.5 t o  23 e V  by Kramers-Kronig analysis 

of room temperature normal incidence reflectance data. 

E: 

similmity of features t o  that of Si which had been rather completely 

interpreted, and 7 and 12 e V  peaks were analogously associated with d i r -  

ec t  t ransi t ions r2,-, + r15 at the center of the Brillouin zone and 

X4 + X1 at k = - (100) respectively. 

Structure i n  

near 7 and 12 e V  was  observed and by consideration of band shape and 2 

2% 2n 
a 

A later study i n  1963 by Walker and Osantowski15 of the absolute 

reflectance spectrum of a rype 11 specimen at room temperature from 4 

t o  30 e V  showed structure i n  E 

and l2 eV peaks were given the same interpretation as tha t  of philipp 

and T ~ 1 3 t . l ~  The new high energy structure near 16, 20, and 24 e V  w a s  

assigned t o  t ransi t ions near the L point k = (111) of the Brillouin zone. 

near 7, 12, 16, 20 and 24 eV. The 7 2 

.h 
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The existence of the new structure which was not seen by Philipp and 

Taf t14  w a s  explained as possibly originating from the increased purity 

of the sample used by Walker and Osantowski. 15 

Claxk, Dean and €Iarris16 (CDH) i n  1963 performed extensive trans- 

mission studies on the indirect i n t r in s i c  absorption edge i n  diamond 

and also recorded the reflection spectrum between 5 and 14 e V  at room 

temperature and between 5 and 8 e V  at 133OK.  

7 and 12.5 e V  and an additional weaker peak at  9 e V .  

temperature they observed the 7 e V  peak t o  be sharper and more intense 

and shifted s l igh t ly  t o  a higher energy as compared t o  the  room temper- 

ature results. 

observed t o  drop below the room temperature resu l t  beyond 7.5 eV.  

9 e V  peak w a s  assumed t o  ar ise  from threshold t ransi t ions at the L 

point. 

They observed peaks at 

A t  the lower 

In addition, the reflectance at low temperature w a s  

The 

According t o  CDH the temperature dependence of the 7 e V  peak 

was 

Philipp 

dE (direct)  

dT 
= -6.3 f 1.8 x lom4 eV/degK. (1 1 

and Ta,ft17 remeasured diamond and obtained a new ref lec t -  

ance curve which differed only s l igh t ly  from t h e i r  previous measurement. 

They did,  however, observe structure ne= 24 e V  not resolved earlier. 

17 A reanalysis of Walker and Osantowski1s15 data by Fhilipp and T a f t  

found some inconsistencies i n  the i r  r e su l t s  indicating tha t  the experi- 

mental reflectance values were too low, at least f o r  energies greater 

than 16 eV. 
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The previously mentioned changes i n  the 7 e V  peak at low tempera- 

ture seen by CDH were interpreted by Phillips18 as due t o  a hybrid 

exciton at  the r point. Consistent with t h i s  v i e w  he considered the 

drop i n  low temperature reflectance as the start of an antiresonance 

and assumed the low temperature curve would display a minimum and re- 

jo in  the room temperature value near 8.3 eV.  

the direct  interband edge r 
as proposed by previous work. 

On this basis  he placed 

+ at 8.7 eV rather  than near 7 e V  
25' 15 

Recently a theoret ical  discussion by Duke and Segall" suggested 

the nonexistence of hyperbolic excitons. Since the hybrid exciton 

model proposed for  the 7 eV peak i n  diamond by Phi l l ips  uses the hyper- 

bol ic  exciton as a basis, t h i s  new re su l t  casts doubt on Phi l l ips '  

interpretation. 

In  reply t o  Duke and S e g d g ,  Hermanson2' has r e m i m e d  the 

existence of hyperbolic excitons. Thus at this time the existence of 

hyperbolic excitons i s  s t i l l  an open question. 

Correlatfon of experimentally determined opt ical  spectra of sol ids  

with the theoret ical  calculations i s  obtained by means of the  opt ical  

constants. Only recently has there been a theoret ical  interpretat ion 2 

available fo r  explaining the  optical  constants associated with ultra- 

violet  electronic states in  solids * 

"he optical  constants of a sol id  axe defined by the electro- 

magnetic f ie ld  equations i n  t h e  following way. The wave equation fo r  

the e l ec t r i c  f i e l d  i n  a conducting medium i n  MKS uni t s  i s  
2 a  a &  - Ell - = 0. 2" a+ V E - a p  - a t  a t 2  
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When the conductivity i s  zero (a = 0)  the 

i n  terms of the index of refraction n can 

nz 
A iu(-- t) E = E o e  c 

familiar plane wave solution 

be writ ten 

(3  1 
2 where n = ~ p .  

ection with velocity v = c/n. 

suggests a solution of similar form 

This solution represents a wave traveling i n  the  z d i r -  

The case of f i n i t e  conductivity (a # 0) 

Nz 
1 A i w ( -  - t) E = E o e  C 

which i s  a solution i f  

N i s  the complex index of refraction and defined by 

N = n + i k  ( 6 )  

where k i s  the extinction coefficient. Thus Eq. 4 can be writ ten 

nz 
E = E e  e -  A i w ( y  - t )  - wkZ 

0 C 

A 

which represents a damped traveling wave. 

sponse function E can also be defined 

A complex d ie lec t r ic  re- 
CI 

A iap 
E ~ + ~ E  2 

E : = c p + - =  
w 

from which 

8 = ( n 2 - k 2 )  + i2nk = = E + i E  
1 2' 

It then follows by equating r ea l  and imaginary par t s  tha t  

2 2  
E, = n - k  

J. 

( 9 )  

€2 = 2nk. 
From a theore t ica l  point of  view c 2  i s  the  most important parameter. 
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I n  order t o  obtain the optical  constants (n,k) i n  terms of re- 

f lec t ion  measurements, consider a monochromatic plane wave (E,H) inci-  

dent upon the interface between a vacuum and an absorbing medium giving 

rise t o  reflected (E',H") and refracted (E",H") waves. The absorbing 

medium i s  assumed t o  be both homogeneous and isotropic.  

i s  shown i n  Figure 2. 

This s i tua t ion  

Fig. 2. Electromagnetic f ie ld  relat ions at the  interface 
of two media. 

For normal incidence, which i s  pertinent t o  t h i s  research, the 

angles y and 6 are zero and the direct ion of the e l ec t r i c  and magnetic 

vectors i s  meaningless. Using two of Maxwellis equations 

3 a$ 
a t  V X E  = - - 

A 
aD V X H  = - J + - A 

a t  



I 
and the boundary conditions that the tangential  components of E and 

H are continuous, the  r a t i o  r of the  ref lected t o  incident amplitude 

i s  

A A 

21 

A 

= r  n + i k - 1  E' 
E n + i k + l  

- - -  

with a similar result for H'/H. 

The relfected power or reflectance R i s  

n 

r = Irl. 2 _ A  

R = rr* = r 
A 

The complex re f lec t ion  amplitude r can be w r i t t e n  
A 

= r (cos e + i s i n  8 )  n + i k - 1  = re i e  
n + i k + 1  r =  

where 8 i s  the angle of phase change between the incident and reflected 

e l e c t r i c  f i e l d  amplitudes. Equating the  r e a l  and imaginary par t s  give 

two simultaneous equations 

n - 1  k s i n  e + (n + 1) cos 8 = - r 

IC cos e - (n -t 1) sin e = k/r.  

The four inter-related parameters (r, e, n, k)  imply tha t  knowledge 

of any two determines the remaining pair, f o r  example 

2 1 - r  
1 + r 2  - 2r  cos 8 

n =  

-2r s i n  0 
1 + r 2  - 2r  COS e 

k =  

From EQ. 10, c1 and c2 can be determined i n  terms of (??,e). 

pression fo r  c2 i s  

The ex- 

4 r ( l  - r2) s i n  8 
(1 + r 2  - 21- cos 8)2' 

"2 = - 
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Since r can be found from a reflectance experiment (r = t 6 -  , 
where R i s  the  measured reflectance), the evaluation of n, k, cl, and 

5 depend on a determination of the phase angle 9 .  

The electronic states of a solid on the  one-electron band model 

a re  usually depicted by an energy (E)  versus c rys ta l  momentum 6) dia- 
A 

gram fo r  various directions i n  k space. On these diagrams we  can also 

indicate the basic electronic excitations, e .g., di rec t  and indirect  

t ransi t ions and excitons. For direct  or ve r t i ca l  t ransi t ions the f i n a l  

electronic state k value i s  the same as that of the i n i t i a l  state i n  

contrast t o  indirect  transit ions where the  i n i t i a l  and f i n a l  electron 

state k values are different .  According t o  the Bloch model of sol ids  
2 
k i s  conserved and thus indirect t rans i t ions  involve interactions with 

other excitations such as phonons. 

I 

A. 

It is  possible t o  distinguish experimentally between these ele- 

mentary excitations, e.g., the 

5 s i t ions  i s  of the  order of 10 

t ransi t ions i s  of the order of 

dependence of excitons d i f fe rs  

t ransi t ions.  

absorption coefficient for  direct  tran- 

t o  10 cm while tha t  fo r  indirect  

10 cm . Similarly the  temperature 

6 -1 

3 -1 

from 

The theoret ical  expression f o r  

lifetime broadening has 

tha t  of both direct  and indirect  

22 fo r  direct  t ransi t ions where €2’ 

been neglected, i s  



where E = #h and the in tegra l  is  over a surface of constant energy, 
2% A 

E. .(k) = Ej (k )  - Ei&. I n  this expression Q i s  the volume of the 
1 J  

first Brillouin zone, the l e t t e r s  i and j denote valence and conduc- 

t i o n  band states respectively and f i j  is the  electronic osc i l la tor  

strength. 

proportional t o  

The density of s ta tes  having the energy differences Eij i s  

We see tha t  the l i ne  shape of 

Vk Eij. Phillipse2 has shown that fo r  ionic c rys ta l s  where the elec- 

i s  determined primarily by f i j  and 

t rons a re  t i g h t l y  bound the  osci l la tor  strength, f i s  approximately 

constant throughout the Brillouin zone and thus Vk Eij determines the 

l i n e  shape f o r  these materials. 

i j’ 

For normal metals where the electrons 

are more nearly f ree  the si tuation i s  much different  and the variations 

i n  f i j  become quite important. 

a t i gh t  binding model can be applied t o  covalent materials such as 

To the  extent t h a t  arguments based on 

diamond we w i l l  assume that t h e  structure i n  c2 f o r  diamond i s  deter- 

mined by Vk Ei j. 

nearly constant throughout the Bril louin zone and replace f i j  by f i j .  

With t h i s  approximation c2 i s  proportional t o  the  interband density of 

s t a t e s  given by 

Thus we consider bands i and j f o r  which f i j  i s  
- 
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The behavior of E*(@) or  E i s  singular at those points i n  
2 mi j 
k space called c r i t i c a l  points for  which 

This can occur at various points on the surface $U = E - E . 
j i  

was  the first t o  point out the significance of such Van 

c r i t i c a l  points. Phillips2' has shown tha t  the number of such points 

can be res t r ic ted  by considerations of symmetry and connectivity. 

Phillips2* also distinguishes between symmetry interband points 

(s.i.p.) f o r  which 

I 
(s.i.p.) V E . 0  = VkEi(k) = 0 

k J  

and general interband points (g.i.p. ), 

The s.i.p.'s occur only at points of high symmetry i n  the Bril louin zone 

such as k = 0 whereas the  g.i.p.'s may occur on symmetry l ines,  planes 

or general points; i.e., whenever the  slopes are  equal. 

A 

The analytical  behavior of the jo in t  density of s t a t e s  function near 

a c r i t i c a l  point may be obtained by a Taylor series expansion of 

E.($) - E$) about the  c r i t i c a l  point ko. 
A 

J 

When all the  coefficients ai me positive (negative) we have a minimum 

(maximum) i n  the interband joint density of states and t h i s  s i tuat ion 

i s  denoted Mo ( 

and are denoted M1 and %. 
). Mixed signs of the  ai correspond t o  saddle points % 

When the  above expression i s  substi tuted 
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i n to  the expression for  the interband 

we find; e.g., near an M1 singularity 

= c1 

jo in t  density of states re la t ion  

where C and C are  constants. The general shape of anMo edge as 

w e l l  as the  other types i s  shown i n  Figure 2(a), (b), (c), (a) .  As 

Phillips22 points out "the most important quali tative aspect of Van 

Hove singularities is t ha t  a simple singularity does not produce a 

peak but only an edge. 

M2 singuLarities must be almost degenerate." 

peak is indicated i n  Figure 2(e). 

1 2 

To obtain a narrow plateau or  "peak", % and 

This condition for  a 

The preceding discussion indicates why the structure i n  c2 i s  

important. 

a peak and thus accurate experimental results are  necessary. 

A shoulder has a different theoret ical  interpretat ion than 

Consider how t h i s  general interpretat ion of opt ical  constants i n  

terms of the  density of s ta tes  and c r i t i c a l  points applies t o  diamond 

i n  particular.  

mond are shown i n  Figure 4. 

penetrating face centered cubic l a t t i c e s  while the 1st zone i s  a 

truncated octahedron. 

indicated; e.g., r denotes the center of the zone and L the  midpoint 

of the hexagonal face. 

The crystal structure and first Bril louin zone of dia- 

This s t ructure  corresponds t o  two in te r -  

The principal l i nes  and points of symmetry are 

I n  the  preceding section we indicated tha t  at points of high 

symmetry such as r ,  X and L, the gradients of the energy Functions for  
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Fig. 4. "he crys ta l  structure and first Bril louin zone of diamond. 
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the conduction and valence bands vanish, thus giving rise t o  singu- 

lar i t ies  i n  the jo in t  density of states function. i s  pro- 

portio& t o  the jo in t  density of states function we expect t o  see 

s t ructure  i n €  

Since t 2 

corresponding t o  these s ingular i t ies .  

Figure 1 compares two recent band calculations f o r  diamond. Some 

of the  points and l i nes  of high symmetry corresponding t o  those of the 

Bril louin zone are indicated. 

we might expect t o  find structure i n  E 

f o r  singularities i n  the joint  density of states exists at these 

points . 

2 

By a brief perusal of the band structure 

at r , X, L since the  conditions 

From Figure 1 we see that  the  indirect  edge or onset of indirect  

t rans i t ions  occur from r 
along the  [1,0,0] direction. 

of 5.47 e V  as determined by Dean e t  al. 

+ AI where A1 is a point about three quarters 

This t rans i t ion  corresponds t o  an energy 
25 

25 

"he direct  edge or onset 

+ r15,. This corresponds 

between the two calculations. 
r25 

of d i rec t  t rans i t ions  occurs from 

t o  an energy near 7 eVwith some vaziation 

I n  the chapter on Results and Discussion we w i l l  consider detailed 

interpretat ion of t h i s  and other points. 
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111. EXPERImAL DETAILS 

Absolute reflection spectra at near normal incidence were obtained 

i n  the present research i n  the range 5.5 - 31 e V  a t  both 300 and 7 f K  

with a system composed of a McPherson 225 monochrmator, various u l t r a -  

v io l e t  sources, a specially constructed low temperature reflectometer 

and associated recording equipment. A schematic view of the optical  

system is shown i n  Figure 5. 

A Wherson Model 225 one meter normal incidence scanning mono- 
0 

chromator was used with a 1200 line/nnn grating blazed at 1500 A giving 

a first order dispersion of 8.3 A/=. 
0 

The grating was magnesium 

fluoride coated t o  increase its efficiency i n  the vacuum ul t raviolet .  

The monochromator was evacuated by an o i l  diffusion pump and 8s an . 
-6 independent uni t  could maintain a vacuum s l igh t ly  better than 1 x 10 

torr. The wavelengths of the source l ines  could be read d i rec t ly  from 

a mechanical 

For the 

Figure 6 (a)  

of the l i gh t  

m o d e l  of the 

counter t o  an accuracy of 1 Angstran. 

work above 1100 A a hydrogen glow discharge was used. 

shows a photograph of the lamp. 

source was made ent i re ly  of copper and brass. 

source was made of aluminum but it w a s  found that the 

0 

The main body or electrodes 

An earlier 

cooling tap water, filtered through a water softener, reacted with 

the aluminum and caused white deposits t o  build up rapidly. No short 

term deposit problem was apparent with the brass and copper construc- 

tion. 

cooled by circulating cold water. 

A s  indicated i n  Figure 6 (a)  both the anode and cathode were 
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Boron nitride was used t o  contain the discharge i n  a one-eighth 

inch diameter capillary. 

machined i n  the boron ni t r ide.  

the source by blowing cool air through the finned surfaces. 

n i t r ide  e lec t r ica l ly  separated the  anode from the cathode and insulated 

screw8 mechanically coupled these electrodes i n  position. A copper- 

tungsten a l loy  was used on the t i p  of the cathode because of the low 

high voltage sputtering quality of this material. A small hole In the 

t i p  allowed visual inspection of the discharge through a window on the 

rear of the cathode. 

O-ring finishes and cooling f in s  were eas i ly  

A fan provides additional cooling f o r  

The boron 

This source was powered by a Kepco Model HB 2050 power supply 

capable of 2000 volts  at 500milliamps. 

gulated. 

be more desirable f o r  maintaining constant l i n e  intensi t ies .  A load 

res i s tor  between the power supply and the lamp prevented avalanching 

of the source current. 

This supply was voltage re- 

However, it was found that a current regulated supply would 

The gas discharge was stable over a large range of gas pressure 

but normal operating conditions using 300 micron entrance and e x i t  

slits showed a source pressure of 10 microns with 4 x lo+ t o r r  i n  the 

main chamber of the monochromator. 

supply was operated a t  1400 volts and 400 milliamps, 500 vol ts  of which 

were dropped across the lamp giving 250 watts of power dissipated i n  

the source. 

For these conditions the power 

0 

Below 1100 A, argon gas was used in the lamp shown i n  Figure 6 (b). 

This 1- was similar t o  the hydrogen lamp but modified by replacing the 
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insulat ing screws holding the electrodes 

independently gripped the boron n i t r ide .  

together by electrodes which 

T h i s  change was necessary 

because of the higher voltages involved i n  th i s  discharge. 

The lamp was excited by a pulsed power supply made from a modified 

thyratron tube t e s t ing  unit giving approximately 40 pulses per second 

t o  the light source during normal uperation. A simple diagram of the 

high voltage pulse power supply is  shown i n  Figure 7. Excited In 

this m e r ,  a useful  l i n e  spectrum was obtained extending fram Lymaa a 

(1216 A) down t o  350 A. 
0 0 

Excitation of the l ight  source occurs as follows. The 1200 vo l t  

power supply charges capacitor C 

igniter-rod c i rcu i t .  

through r e s i s to r  Rl, c o i l  L and the 1 
A t  the same time the main power supply charges 

capacitor C2 through the res i s tors  R2 and R 

grid poten t ia l  is adjusted by the t r iggering un i t  t o  permit conduc- 

When the thyratron 3' 

t ion,  the capacitor C1 charge w i l l  pass through the thyratron and 

igniter-rod c i rcu i t s .  The ignitron w i l l  conduct provided the igni t ron 

anode poten t ia l  is  suf f ic ien t ly  posi t ive t o  maintain the discharge 

voltage poten t ia l  exis t ing across C2 Lo the light source which i n  tu rn  

will cause ionization of the gas and a subsequent capacitor discharge 

through the lamp giving rise t o  radiation from multLple ionized atoms. 

The current surge through the  igniter-rod c i r c u i t  w i l l  quickly dis- 

charge the capacitor C1, the thyratron anode poten t ia l  w i l l  fa l l  below 

that needed t o  maintain the arc i n  the thyratron, the thyratron ign i te r -  

rod c i r c u i t  current will fa l l  t o  zero and the ignitron w i l l  f a i l  t o  
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conduct thus quenching 

w i l l  then be recharged 

the l i g h t  source. 

i n  time fo r  the next cycle. 

The capacitors C1 and C2 

U s i n g  the  hydrogen gas source, data points were obtained with 

r e l a t ive  accuracy of 1% whereas with the argon source there was a 5$ 

sca t t e r  of points. 

should be considered less rel iable  than resu l t s  a t  lower or  higher 

energies. 

Thus the high energy resu l t s  between 13 and 19 eV 

The low temperature reflectometer was constructed of s ta in less  

steel  with viton O - r i n g s  seals where necessary. 

cyl indrical  i n  shape with four ports at  right angles as shown i n  

Figure 8. 

The re f l ec tme te r  was 

A leak valve f o r  br inging the reflectometer chamber up t o  atmos- 

pheric pressure was mounted on one port .  

thermocouple wires for monitoring the sample temperature were brought 

out through a kovar s e a l  and sealed w i t h  high vacuum epoxy t o  the feed 

throughs. 

junction was attached t o  the sample holder. 

Through the same por t  t he  

Inside the reflectometer a copper-constantan thermocouple 

The top port  contained t h e  mechanism f o r  positioning the sample 

by rotat ion or up and down motion. 

sample holder i t s e l f  which consisted of a one inch diameter s t a in l e s s  

s t e e l  tube approximately 16 inches long with a cy l indr ica l  capper block 

welded on the bottom end. 

holder. 

small amount of epoxy and the  copper block was fastened with two Allen 

head screws t o  a g' s l o t  i n  the sample holder. With the sample block 

Attached t o  th i s  mechanism was the 

Figure 9 shows the details of the sample 

x $'I x 1" capper block with a Samples were mounted on a 
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i n  position in  the sample holder it was then possible t o  cool or bake 

the sample by putting ei ther  liqvid nitrogen on a heating tape down 

the  s ta inless  s t e e l  tube of the sample holder. 

sample holder were designed 80 that  the face of the sample pivoted 

around the tube axis upon rotation of the sample holder. 

The reflectometer and 

A stainless  s t e e l  bellows was welded around the s ta inless  s t e e l  

tube of the sample holder so that ve r t i ca l  motion could be transmitted 

without breaking the vacuum seal. In the ear ly  stages of experimenta- 

t i on  no bellows was used and ver t ica l  motion was obtained by sliding 

the tube through a double teflon O-ring seal. 

be inadequate as ver t ica l  motion would introduce a small vacuum leak. 

I n  the final design with bellows the double O-rings were u t i l i zed  fo r  

axial alignment of the sample holder tube and provided no vacuum seal.  

The ver t i ca l  motion device was made fram aluminum using ball 

The method was found t o  

bearing in the rotating parts. An externally threaded col lar  r igidly 

clamped t o  the sample holder tube provided the ver t ica l  motion when a 

larger  internal ly  threaded collar was turned. 

fixed in ver t ica l  position but  rotatable so that when turned the 

action of the threads transfered ver t ica l  motion t o  the tube. 

mechanism i n  conjunction wi th  the bellows gave approximately one inch 

of ve r t i ca l  travel.  

T h i s  outer col lar  was 

This 

Rotary motion of the  sample was accomplished i n  the following 

manner. On the upper end o f t h e  bellows a flange was welded which i n  

turn was O-ring sealed t o  the reflectometer body and held i n  position 

by three screws. The flange was slot ted and allowed rotation of nearly 



90' with the screws in position. When it was desired t o  ro ta te  t he  

sample the  three screws were loosened and the sample holder rotated 

by turning the flange. 

reflectometer under vacuum although rotat ion did cause s l i gh t  air 

leakage. 

necessary t o  change the angle of rotat ion during the ref lect ion run. 

Instead the desired angle of rotat ion was selected and fixed p r io r  t o  

i n i t i a t i o n  of the measurement. 

This operation could be performed w i t h  the  

The leakage did not cause any problem since it was not found 

The bottom port of the  reflectometer contained a sodium sa l icy la te  

coated p p e x  l i gh t  pipe i n  the shape of a question mark which could be 

rotated t o  monitor either the incident or  ref lected beam. A n  EMI 6256 

photmul t ip l ie r  tube was positioned at  the bottom of the l i gh t  pipe. 

This tube has i ts  peak efficiency near the peak of the fluorescence 

frm the  sodium sal icylate ,  namely 4400 A. The photatnultiplier was 

powered by a John Fluke, D.C. Power Supply and normally operated at  

lo50 volts .  

Keithley Model 417 picommeter. 

ranged from 0 t o  3 vol t s  on a l l  scales was then fed through a potentio- 

meter network t o  a 10 mil l ivol t  Leeds & Northrup s t r i p  chart recorder. 

0 

Signal output from the photomultiplier was fed i n t o  a 

The output of the picoammeter which 

The remaining reflectometer side port  was used during low tempera- 

t u re  measurements f o r  evacuating the r e f l ec tme te r  separately from the  

monochromator. For low temperature work a lithium fluoride window was 

used as a vacuum seal between the  monochromator and the reflectometer 

systems. A Varian 15 l i t e r / s ec  . Vacion-titanium sublimation pumping 
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system attached t o  the port  was able t o  maintain the reflectometer 

chamber at a pressure of better than to r r .  This separate pumping 

system guaranteed that the sample i n  the reflectometer was not exposed 

t o  o i l  vapors from the diffusion pump of the monochromator. 

Vacion pump operates on a different principle than diffusion pumps, 

namely the gas a t m  i n  the reflectcxneter are  ionized and then react 

with the titanium surface i n  the pump forming s table  ccmpounds. Be- 

cause sample surface is a severe problem in  ref lect ion measurements 

obtaining a clean environment a t  low temperature involved a major 

experimental effor t .  

was sealed off and the window between the reflectometer and monochro- 

mator removed. 

The 

During roam temperature measurements the port 

The back p la te  of the reflectometer was removable and had attached 

t o  it a cylindrical  copper reservoir with protruding fins. The copper 

fins extended t o  surround the sample holder from the sides and bottom. 

When the reservoir was f i l l e d  with l i qu id  nitrogen the  f in s  served as 

a cold shield t o  t rap any condensable molecules remaining i n  the re- 

flectometer which might have se t t led  on the cold sample surface. 

The low temperature experimental procedure is  described below. 

The room temperature procedure i s  the same except the sample is  not 

cooled and the window and Vacion pumping system are  removed. 

With the window i n  place the  l ight  source was first turned on t o  

s tab i l ize  before preparation of the sample was begun. 

then mounted t o  the small capper block and given an acetone scrub and 

methanol rinse t o  remove any possible o i l  contamination on the  crystal  

A sample was 
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surface. 

that draps of f lu id  not shaken off did not remain on that part  of the 

c rys t a l  t o  be illuminated by the incident beam. An additional apera- 

t u re  was placed i n  the re f lec tmeter  t o  ensure that the area of the 

incident beam s t r ik ing  the c rys ta l  was smaller than the c rys t a l  surface 

area i t s e l f .  

The evaporating methanol was visually observed t o  be sure  

With the sample now ready f o r  placement i n  the reflectometer, the 

r e f l ec tme te r  chamber was quickly brought up t o  atmospheric pressure 

and the  back p l a t e  removed. 

i n  one of the s l o t s  i n  the sample holder aligned with the e x i t  s l i t  

aperatures. 

A visua l  check was made t o  see if the hole 

The sample mounting block was next inserted in to  the a l te rna te  

s l o t  of the  sample holder and secured by two screws. 

holder was rotated u n t i l  it appeared tha t  the eample surface was nearly 

perpendicular t o  the direction of the incident beam. 

was turned i n t o  posit ion for  measuring the incident beam. 

back p l a t e  of the re f lec tmeter  was replaced, the reflectometer was 

evacuated by first rough pumping with a l iquid nitrogen cooled sorption 

pump and then fur ther  evacuated by the Vacion pump. 

cleaning t o  a vacuum of about 10 

Then the sample 

The l ight  pipe 

After the 

Total  t i n e  from 

t o r r  was approximately 6 minutes. 

As soon as  the back plate  was i n  place the photomultiplier high 

-6 

voltage was applied i n  order t o  allow the dark current t o  reach a 

steady value. 

the incident beam was coming through the open hole, the l ight pipe was 

Having previously adjusted the sample holder so that  
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adjusted t o  obtain a maximum signal. 

t a ted  u n t i l  the decreasing effective area of the hole began t o  cut off 

the  beam reaching the l ight  pipe with a resul tant  drop i n  signal. 

this point the sample holder was fixed i n  posit ion by the three screws 

holding it t o  the bcdy of the  reflectometer. 

s ize  used t h i s  angle of rotation was about 1l0 from normal incidence 

which was conveniently close enough t o  the assumption of normal inc i -  

dence used i n  the  experimental interpretat ion.  Using an angle larger 

than 11' would have resulted i n  relative instead of absolute ref lect ion 

data since pa r t  of the reference beam would have been lo s t .  The small- 

est l imiting angle was about 4" off normal at which point the l ight 

pipe when rotated t o  pick up the ref lected beam would begin t o  in t e r -  

fere with the incident beam. 

The sample holder was then ro- 

A t  

For the par t icu lar  hold 

The sample w&8 then moved i n t o  the incident beam by means of the 

Thirty ccanplete turns of the screw mechanism v e r t i c a l  motion device. 

corresponded t o  the distance between the  two sample holder hole centers. 

The l i g h t  pipe was then rotated in to  posit ion f o r  measuring the beam 

reflected from the sample surface. 

observing the maximum signal from the photomultiplier. 

the incident beam was ent i re ly  on the  surface of the c rys t a l  the sample 

holder was raised and lowered u n t i l  the maximum s ignal  was obtained. 

With the c rys t a l  now i n  the optimum posit ion f o r  measurement So 

that no fur ther  rotat ion would be necessary the reflectometer and sample 

were baked overnight at  approximately 140%. which helped t o  drive off 

This posi t ion was optimized by 

To insure that 
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any water vapor 

avoided because 

present. 

of the epoxy and O-ring seals present. 

Baking temperatures higher than t h i s  were 

The sample 

heating was accmplished by placing a heating tape i n  the stainless 

s t e e l  tube of the sample holder. 

and adjusted by varying the current through the heating tape. 

The sample temperature was monitored 

After the overnight sample bake was completed the heating tapes 

were removed and the l i gh t  source turned on t o  s tab i l ize  w h i l e  further 

prepaxations were continued. When the reflectometer had cooled suf- 

f ic ient ly ,  liquid nitrogen was added t o  the rem flange reservoir 

approximately t h i r t y  minutes before the sample i t s e l f  was t o  be cooled. 

This allowed any condensable molecules not removed by baking t o  freeze 

out on the large cold surface area of the reservoir rather than on the 

cold sample surface. 

While monitoring the reflected beam the sample was next cooled by 

pouring l iquid nitrogen down the s ta inless  s t e e l  tube of the sample 

holder. 

with the sample mounting block i t s e l f  and thus the sample w a s  cooled 

by conduction. 

a f t e r  the sample was cooled it was taken as an indication of impuri- 

t i e s  building up on the cold sample surface. 

was noticed at  two stages of the experiment. 

reflectometer design a s l i d i n g  device having several interchangeable 

windows with different transmission characterist ics -8 used. An 0- 

ring was used t o  i so la te  this mechanism from the monochromator but 

The copper block on the end of the tube was i n  thermal contact 

If any continuous decrease i n  reflection was observed 

Such reflectance drop 

Fi rs t ly ,  i n  the or iginal  



sti l l  enough leakage, possibly o i l  vapor, from the monochramator 

caused a reflectance drop. Secondly, before the bellows was attached 

t o  the sample holder ver t ica l  motion caused very small pressure in- 

crease but quite s t r iking reflectance loss .  

With the monitoring precaution observed and no reflectance de- 

crease the reflection spectrum over the region of in te res t  was then 

taken. 

rotated and a measurement of the incident beam intensi ty  taken. 

Another ref lect ion measurement followed by an additional incident 

measurement completed the run giving two separate measurements t o  

average. 

The sample was next moved out of the beam, the light pipe 
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IV. DATA ANALYSIS 

A. KRAMERS-KRONIG FBLATIONS 

When the absorption coefficient i s  extremely high, transmission 

measurements can no longer be made t o  determine the opt ica l  properties 

o&.:solids. 

using Kramers-Kronig analysis f o r  determination of these properties. 

Recently, attention has turned t o  ref lect ion measurements 

Reflection measurements a t  near normal incidence of fe r  considerable 

advantages over those =de wel l  away from normal incidence. These 

advantages include simpler theoretical  expressions and insensi t ivi ty  

of most materials t o  polarization effects a t  small angles. A t  t he  

same time however the simpler expressions mean t h a t  we have only a 

single reflectance re la t ion  of the  form R(n,k) and thus do not have 

suff ic ient  information t o  determine n, k independently. However 

there is  one more relationship which can be invoked through the 

use of dispersion relations.  

Mspersion relat ions i n  general express the  interdependence of 

the real and imaginary pa r t s  of  complex functions sat isfying cer ta in  

conditions. For example consider the  complex function F(w) = Q(o)  + 

i P(w), the dispersion relation between P and Q is  

A 

I n  optics it has been shown that  such relat ions may be applied t o  the 

complex refract ice  index, the complex d i e l ec t r i c  function and the com- 

plex ref lect ion amplitude. 
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The opt ical  constant of theoret ical  in te res t  i s  the imaginary 

par t  of the complex dielectr ic  response function. From the Fresnel 

equations f o r  normal incidence ( r e f l ec t iv i ty  r = lrl, R - rz+ = r ) 
A 2 * A  

the  imaginary par t  of the dielectr ic  function can be writ ten 
2 4 r ( l  - r ) s i n  8 

(1 + r2 - 2 r cos e )  2 
= -  

2 

where 9 i s  the angle of phase change of the  e l ec t r i c  f ield upon reflec- 

t ion.  The angle 8 can be determined fromthe reflectance spectrum by 

an integral  transformation or dispersion relat ion first employed by 

Kramers and Kronig. This re la t ion s t a t e s  t ha t  the phase angle 9 for  

any frequency w_ is  given by 

Thus, by determining e from a knowledge of R we can then obtain E 

fact  knowledge of r , e  means we can determine cl, E ~ ,  n, and k since any 

constant can be expressed i n  terms of any other two, i.e., n(r,e), 

i n  2' 

k(r ,  e), +, e), c2(r, 0 ) .  

The d i f f icu l ty  i n  applying t h i s  re la t ion i s  tha t  the  whole of the  

electromagnetic spectrum contribues t o  the value of the angle a t  any 

par t icular  frequency w 

the  reflectance spectrum but the derivative of i t s  logarithm with re- 

F i rs t  it i s  noticed from Eq. 28 t h a t  it i s  not 
0' 

spect t o  frequency which contributes t o  the phase angle. Thus regions 

i n  which the reflectance i s  changing slowly with frequency contribute 

very l i t t l e  t o  the phase angle. 

i s  largest  near w = w and decreases rapidly as the difference 

w + w  

0 - w  
0 

0 
The weighting Function I n  

0 
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w - w increases. Thus while the phase angle 8 evaluated a t  w0 de- 
0 

pends on the en t i r e  frequency range, i n  f a c t  only the frequency range 

i n  the neighborhood of o contributes significantly.  The contribution 
0 

f romthe low frequency side can be easi ly  included by simple extra- 

polation of the ref lect ion data using known values of the index of re- 

fraction i n  transparent regions. In general however the high frequency 

side is  characterized by intense continuous absorption and no generally 

applicable technique is  available f o r  determining the high frequency 

contribution. The usual method has been t o  assume a somewhat a rb i t ra ry  

smooth extrapolation of experimental data t o  very high frequencies. 

Certain assumptions can be made about the behavior of reflectance a t  

very high frequencies but the most sensit ive test  of any technique i s  

tha t  the phase angle must be zero i n  regions of no absorption. 

An a l te rna te  way t o  t r e a t  the high energy contribution developed 
26 by Roessler proceeds as fol lows.  In practice the reflectance i n  some 

f i n i t e  region (a,b) i s  measured. The in tegra l  for the phase angle can 

be writ ten 

where the contribution o ( W  ) can be determined from the experimental 

data. In  the in te rna l  (O,a), i s  always less than uo since l i e s  

0 

0 
w + w  d 

dw 
i n  (a,b) and thus - In  is  continuous and posit ive without 



change of sign i n  (0 ,a ) .  

theorem fo r  integrals  which states tha t  i f  f (x)  and g(x) are continuous 

functions i n  a‘; - -  x <b and i f  g(x) - > 0 throughout t h i s  interval  then 

We can thus apply the generalized mean value 

B(W,)  = B ’n 

where a <  - -  5 C b .  

ship i s  true.  

There i s  only one value of 5 f o r  which t h i s  relation- 

For our si tuation then we have 

b + wo 

b - 
0 

I n  r 5 where A = - A, II 5 lying i n  (0,a) and a similar expression for  
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b + wo 

b - w  f3(0 ) are weighed by sharply peaked functions, e.g., I n  
0 0 

Fromthese two simultaneous equations A and B may be determined 

which 

and hence e(wo) for  all wo using E q .  28 and c2 from Eq. 27. 

other expressions such as  n, k, el, -my can a l so  now be determined. 

A n y  of the 

1 
€ 

L e t  us  now consider further the  assumption t h a t  A and Bare  nearly 
26 independent of w . Roessler has considered t h i s  problem by expressing 

u(wo) i n  a more general form. This i s  accomplished by first integrating 
0 

EQ. 28 by pa r t s  t o  obtain 

so t h a t  

Q ' w * )  = - ; 1 In 

where 0 < 5 a. 

w + a  
In  r ( c )  0 

Wo - 8 

and a similar expression f o r  B(w ) 
0 

where b c < Q. 

(35) 

0 In  r ( a )  
w - a  
0 

1 
u(wo) = - - I n  

n (37)  
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which i s  exact and general. 

ponds t o  In  r ( 5 )  and shows its functional dependence on wo. 

t ha t  there w i l l  not be a strong contribution t o  a(w, )  unless In  r (a) 

changes rapidly i n  (0,a) and a t  t he  same t i m e  uo i s  near a. Thus we 

expect the bracketed term t o  be fairly constant except possibly near 

w = a. 

there  i s  no strong structure outside (a,b) the assumption that A and B 

a re  constants i s  valid. If structure does exis t  then we must be care- 

f u l  of resu l t s  obtained near a and b but elsewhere the  r e su l t s  a re  

valid.  

t o  show t h a t  the  e r rors  introduced by t h i s  method a re  much l e s s  than 

the uncertainty i n  the or iginal  reflectance spectrum. 

The expression i n  curly brackets corres- 

We see 

A similar argument applies t o  B(wo) .  I n  summary then if 
0 

Roessler applied quantitative checks t o  different  materials 

The evaluation of the  integral transform i n  the earners-Kronig 

analysis i s  carr ied out by computer a s  follows. 

re la ted t o  n, k and r ( re f lec t iv i ty)  by the equations 

The reflectance R i s  
4 

2 2  4 A  

R =  (n - 1) + k R = r.r* (38) 
(n + 1)2 + k2 

0. 6 

= J T =  r i e  where r = I r 1 e 

A n + ik - = r(cos0 + i s ine)  and r = n + i k + 1  

o r  i n  terms of R, 0 w e  can write 

1 - R  
n =  1 + R - 2 n c o s e  

2 4 3 -  sine 
= 1 + R - 2 f l c o s e .  
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A 

Recall t ha t  the complex index of refraction N and the  complex d ie lec t r ic  

constant are related by 
A 

A 

N = n + i k  

l = + i e  = = (n2 - k2) + i2&. 
A.8 (41) 

1 2 

Thus 

Hence, if  we measure the  reflectance R and determine the  phase angle 9 

through the  Kramers-Kronig method t o  be described w e  can then obtain 

a l l  the  opt ical  constants of interest .  

In  order t o  apply the  K-K analysis we consider the  logarithm of 

the ref lect ivi ty ,  a complex function as indicated i n  the  last  section 

which has been shown t o  satisfy the requirements f o r  dispersion 

analysis t o  be va l id  

Applying the  dispersion relation t o  the real and imaginary parts of 

t h i s  function we have 

The physical measurement- gives the  reflectance i n  some interval  (a,b) 

as indicated schematically i n  Figure 10. 
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Fig. 10. Typical reflectance spectrum of a sol id .  

W e  can write the integral  as the sum of three parts 

e(wo) - 1: + [ + = a + @ + I 3  (45) 
b 

where by using p a r t i a l  integration and the generalized mean value 

theorem we have 

a + w  

a - w  
0 

0 0 
[In r ( a )  - In I - (<) ]  ~n 

1 a 

n ii 

w + a  

- a  = A I n  (wo 
0 

Similarly 
W b + w  

b 0 
= B In ( b  O )  - w  n 

B = - 1 [In r(n) - In r ( b ) ]  
n 
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A s  argued i n  the preceding section A and B are approximately independent 

of w fo r  diamond although as pointed out s t r i c t l y  speaking 5 = 5 (w,), 
0 

Choosing two frequencies ("1 and w ) at which we know the c rys ta l  2 

i s  transparent (k = 0 + 8 = 0) then 
b +  

% ) =  0 
- Y  

+ + (b 

giving 

% In  (b, y) - 4 l  (b, "2) 
A =  l n  (a, a,) I n  (b, w2) - I n  (a, w,) In  (b, wl) 

where 

w are such tha t  YJ 0 
Now the  values of 
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w + w  

v w - w  
1 O - In 

0 

We need now t o  evaluate the measured contribution 4. In order t o  

1 = -1n (- n 1 - x  l + x  ) = ;2(x 1 + r x 3  + $x5 + ...I (51) 
3 

avoid the  singularity a t  w = wo we write 

Consider the first portion of the integral  

IW" where w < wo 

and l e t  

then we can make a ser ies  expansion 

2 If we now define @(x) - -(x + 2 x3 + 1 x5 + . ..) 
TI 9 25 

then 

+ ... ) x5 + -  d 2 x =@ (x) = -(x + - n 3 5  

0 4 oo 1 l + x  1 = - I n  (-) = - ln a 1 - x  IT w - - w  
0 
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w + w  

w - - w  
o I n  
0 

dQ w - - E  w - E  0 and thus I = x - d d n r  & 
a a a 

d I n r  dw 
dw 

Hence we can write t h i s  portion of the  integral  as 
w - E :  
0 lim w - - E  

(53) d I n  r 
= y o  

d.0 (XI d In 
- E + O  a 

wO 

l o  
Similarly consider the  portLon of the  in tegra l  where w > w l e t  

0' 

- x' ( <  1). wO - -  
w 

m e n L  TI I 
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We can thus combine the two portions of t he  integral  

( 5 5 )  
w - E  

0 

d l n r  - \e d : d d  w.  
d In r d @(XI  

w + E  
0 

'wO 

To obtain a single formula f o r  allw we proceed as follows. We note 
0 

II that i n  the  l i m i t  a s  w + w the  function 0 approaches 6' iqe., 

0' 

1T 
3 lim lim 2 X - ( x + -  + .  . . ) = v  x + l  Q ( x ) = x + l  n 9 

We can thus ensure continuity of @(x)  a t  w - 
$(x) such tha t  

by defining a function - wo 

0' 
w > w  

We now have our integral  i n  the form 

It has been found that f o r  small values of x we can take the  f i rs t  four 

terms i n  the series as an accurate representation of our function but 

for  values of x near one a more rapidly converging series must be used. 
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Bode3' has given the following f'unctions which w e  w i l l  use w i t h  a 

value of x - .414 taken as the  t ransi t ion between the two series 

representations. 

1 5  $(x) = ; (x  + 1 x3 + - x + , . .)  9 25 

0 < x < 0.414 

1 - x  where y = - l + x  

and define 

w = o  
0 

$ ( X I  = 

w > w  
13 X 

3 0 
n 2  X 

*(x) = - 2 n  - - (x  + - 9 + * &  

(59) 

( 6 0 )  

0.414 < x < 1. 



For computer calculation w e  w i l l  approximate the integral  by summing 

over a number of f i n i t e  changes. 

- In r i - l I n r i + l  - In wi (A Jli + 1 - A Jli) .  
i In wi + 1 

The actual computer program is  given i n  Appendix A. 

I n  summary then we proceed as  follows. We first  measure the re- 

f lect ion a t  various frequencies 

w1 w2 w3 w 4  w 5  . . . . . . W N  (ev) 

We calculate the phase angle 0 using the  method indicated i n  the pre- 

ceding discussion 

ei = Q1 + !$i + Bi 

w 1  + 8 
) i = 1 ,  . . .  N a - &  

1 

i i 

b + w  
Bi = B In  ( 

b - wi 



where A,B a re  determined from se t t ing  e =  0 a t  the  non-absorbing 

frequencies w and w From the computed phase angle 0 and the measured 1 2' 
reflectance R w e  can determine t h e  opt ical  constants 

1 - Ri 
n =  i 1 - 2 5 cos Bi + Ri 

2 s i n  ei 
k. = 

1 - 2 cos Bi + Ri 1 

2 - ki 2 
li i E = n  

E = 2 n. ki. 2 i  1 

We are a l so  interested i n  the  negative imaginary par t  of the inverse 

of the complex d ie lec t r ic  function 

1 2 ni ki 
2 2  e ni - ki - 1 m  7 = 

i 

which i s  related t o  the  electron energy lo s s  which occurs when l o w  

energy electrons impinge upon a solid.  

f 'u l ly  i n  the  section on resul ts  and discussion. 

This w i l l  be discussed more 
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V. RESULTS AND DISCUSSION 

Normal incidence reflection measurements on polished !!2ype I and 

cleaved and polished Type IIa diamonds were made at l iquid nitrogen 

temperature over the range from 5.5 - 11 eV.  Additional room tempera- 

ture measurements were performed on a l l  but the polished Type IIa 

specimen from 5.5 - 31 eV, From the ref lect ion data the phase angle 

of the ref lect ivi ty ,  the components of the complex index of refraction 

and d ie lec t r ic  function, and the energy loss function were calculated 

using Kramers-Kronig techniques. 

-Im F was then assigned according t o  existing energy band calculations. 

The resul t ing structure i n  c2 and 
I 
6 
'Measurements on the t'hree diamond samples were taken at near 

normal incidence (11') using a glass  l ight pipe coated with sodium 

salicylate, which could be rotated t o  monitor the incident and reflected 

beams. Measurements were made on diamond surfaces both "as received" 

and after an acetone-methanolrinse. 

(12 hours at 14OoC) was carried out. 

preparations gave essentially the same results, although t h i s  was  not 

I n  some cases a mild sample bake 

I n  the low temperature region all 

t rue  fo r  the high energy room temperature resul ts .  

concerning this  point w i l l  be given later. 

More de ta i l s  

A l l  diamond samples were 

supplied by Dr. F. A. R a a l  of the Diamond Research Laboratory, Crown 

Mines, Johannesburg, South Africa. 

Low temperature data averaged f'rom three separate runs from 5.5 t o  

11.5 e V  on a "yp IIa cleaved sample are shown i n  Figure ll. 

features of in te res t  fo r  t h i s  region of the spectra are the appearance 

The 
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of a new 7.6 e V  peak at low temperature and thk '  lack of structure be- 

tween 8 - 9 eV. 

tested, although the 7 eV peak appears only weakly i n  a polished Type 

IIa sample. 

IIa sample best represent in t r ins ic  diamond properties i n  th i s  region 

because of i t s  lower impurity content compared t o  other diamond types 

and the general. superiority of cleaved over polished surfaces i n  dis- 

playing ref lect ion fine structure. 

was  consistently seen i n  all specimens studied. 

from 5.5 t o  11.5 e V  was  obtained from about 60 data points taken with 

an average energy separation of 0.05 e V  i n  the  c r i t i c a l  region of the 

two peaks. 

reflectance below 5.5 e V  was calculated from existing index of refrac- 

t i on  data and matched the present low energy data extremely w e l l .  In 

Figure I2 the low temperature reflectance data i s  compared i n  de t a i l  

with that of Clark, Dean and Harrisl6 (CDH). 

These same features were observed i n  all samples 

It i s  fe l t  tha t  the data obtained from the cleaved m e  

The 7.6 e V  peak at low temperature 

The reflectance curve 

The experimental scat ter  on any one run was within 1%. The 

1 

The significant features of tk low temperature data of CDH are 

the large sharpening of t h e  peak near 7 e V  and the drop i n  reflectance 

on the high energy s ide of the peak below tha t  at room temperature. 

the present low temperature data only a slight shaqening of the 7 e V  

peak was seen and i n  no instance w a s  a drop i n  reflectance beluw that 

at  room temperature observed. 

siderable diff icul ty  w a s  experienced i n  keeping the surface clean at 

low temperature. 

meter and monochromator by a permanent window, considerable decrease 

I n  

I n  the i n i t i a l  stages of t h i s  work con- 

Before replacing a s l iding seal between the reflecto- 
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i n  reflectance was observed w i t h  time a f t e r  sample cooling. Similar 

behavior may explain the decrease of reflectance observed by CDH who 

used an o i l  diffusion pumped system. has interpreted the 

data of CDH as due t o  a hybrid exciton at the  center of the Bril lauin 

zone. 

perature reflectance as  the  start of an antiresonance and assumed the 

low temperature curve would display a minimum and re jo in  the room 

temperature value near 8.3 eV. On the basis he placed this direct  

interband edge r + at 8.7 eV. The lack of an antiresonance 

i n  the present data casts some doubt on the hybrid exciton interpretation. 

Consistent with this view he considered the drop i n  low tem- 

25' 

Indeed the present data seem more consistent with the earlier 

interpretat ion which at t r ibutes  the 7 e V  structure t o  

of Mo and y c r i t i c a l  points in  the  vicinity of the r 
t h i s  interpretation the n ° K  d a t a  of Figure I 2  places 

responding t o  the d i rec t  I'251 + r15 t rans i t ion  at 7.2 

a near degeneracy 

point .l,l5 With 

the Mo edge cor- 

eV.  The w e a k  

temperature dependence of the 7.2 eV peak; i.e., the lack of any ap- 

preciable sharpening o r  energy shift of the peak with temperature, 

would seem t o  irrlicate that an exciton i s  not responsible f o r  t h i s  

structure. The f ac t  that a peak ra ther  than a shoulder i s  observed 

can be explained if  the jo in t  density of states near 

off f a i r l y  rapidly for w > u1, where w1 corresponds t o  the  M1 edge. 

The strong temperature dependence of the "new" 7.6 e V  peak suggests 

+ r15 falls 

two possible interpretations.  

of M1 and M type edges. 

Bergstresser and Cohen'l indicate that such a s i tuat ion might occur 

One, t ha t  it i s  due t o  a near degeneracy 

The recent band calculations of Saslow, 2 
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near the center of the  Brillouin zone along the [l,1,1] direction where 

several c r i t i c a l  points exist. Slight temperature sh i f t s  i n  the  lat- 

t i c e  parameters may cause sufficient changes i n  the energy bands near 

t h i s  region t o  introduce one or  more strong t ransi t ions at 7.6 eV. 

Note however from Figure 1 that t h i s  interpretation does not seem l ike ly  

i f  one considers the latest calculation by Herman12 which does not show 

complex structure near r. 

the Bril louin zone other than the r point. 

appear t o  be any suitable gaps i n  the calculations shown i n  Figure 1 

of the necessary energy; i.e., of the order of 8 eV. This point to-  

gether with the r e s t r i c t ion  t h a t  the direct  gap must be less than 7.5 

Second, that it is  an exciton at a point i n  

There do not, hwever, 

e $1,27 i n  order t o  accommodate both the w e l l  established position of 

the f minimum and the ident i f icat ion of the prominent 12.6 e V  peak 

with X4 - X1, give strong evidence against the second explanation. 

The interpretat ion jus t  given of the reflectance structure i n  

r 

terms of d i rec t  t rans i t ions  should r ea l ly  be given not from the re- 

flectance curve but from the E 2  spectra. It w i l l  be seen, bwever, 

that the peaks i n  E2 do indeed occur very close i n  energy. to; corres- . . 

ponding peaks i n  reflectance and the interpretat ion given is  the same. 

Additional high energy reflectance data a t  room temperature were 

taken for  the polished Type I and the cleaved Type IIa diamond specimens. 

These results cornbined with those ju s t  discussed and previous index of 

refract ion data i n  the transparent region give a t o t a l  re f lec t ion  curve 

from 1 - 31 e V  shown i n  Figures 13 and 14. Because the room temperature 
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reflectance matched that at low temperatures for the region 

t o  the Lithium fluoride window cutoff at 11.5 eV it 

the unmeasured low temperature reflectance would als 

t h e  measured room temperature results from ll.5 

Debye temperature of diamond (-20oOoK) supports 

ture insensi t ivi ty  of the high energy structure. 

apparatus it was not possible t o  extend the low t 

beyond 11.5 e V  since this would require windowles 

impurities streaming i a t o  the reflectometer from 

would build up on the cold sample surface and gi 

not i n t r in s i c  t o  diamond. 

ctance curves the phase angle 

the n&bd previously described. 

used in the comprrteF program to  approximate the reflectance c 

a series of short l i n e  segments. 

A t o t a l  of 85 reflectance values were 

The density of points chosen 

highest i n  the regions of structure where rapid changes required much 

shorter l i n e  segments i n  order t o  better represent the reflectance 

curves. The actual data points used and the results of the computer 

calculation fo r  the phase angles of both diamond samples are given i n  

Appendix B. 

Once the phase angle was known the  other opt ical  constants could 

be calculated. Figures 15 and 16 show the results fo r  E ~ ,  c2 and - IM T 1 
E 

f o r  the two ty-pes of diamond. Calculated r e su l t s  f o r  these quantit ies 

as w e l l  as n and k are  also given i n  Appendix B. 
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Figure 15 shows the spectrum fo r  c 2  which i s  closely related t o  

the joint  density of s ta tes  function. 

lowest energy direct  interband t ransi t ion is expected t o  be r 
and the 7.3 eV peak in c2 is  assigned t o  this transit ion.  

this peak has been shifted by the integral  transform from 7.2 e V  i n  

reflectance t o  7.3 eV i n  c2 while the peak at 7.6 e V  i n  reflectance 

has shifted t o  7.8 eV. The interpretation of this peak remains the 

By analogy with s i l icon  the 

+ I' 

Note that 
25' 15 

same as given sbove. 

The structure observed by Clark e t  a.l.l6 and Roessler26 near 9 

eV did not appear i n  the present data. 

w i t h  Philipp and Tast 

by Walker and Osantowski . 
The general shape of 

This r e su l t  i s  i n  agreement 

and a previous measurement i n  this laboratory 

15 

for diamond, G e  and S i  i s  quite similar 

in appearance in that the spectrum of each material is dominated by a 

single large peak. 

mined by comparing band theory r e su l t s  with r e f l ec t iv i ty  data. This 

gap is  insensitive t o  the potential assumed i n  the band calculation. 

I n  Ge and S i  the energy band gap X4 + X1ms deter- 

By an examination of the energy band contour near a c r i t i c a l  point the 

class  of edge may be determined. The edge associated with the ($ - X1) 
c r i t i c a l  point i s  of the MI class. B r ~ s t ~ ~  has shown for  Ge and S i  t ha t  

along the 1 a x i s  there occurs another c r i t i c a l  point which belongs t o  

the b$ class. He thus explains the dominant peak i n  the c2 spectrum 

of G e  and Si  as result ing from two nearly degenerate c r i t i c a l  points 

corresponding t o  (x4 - xl) and (I4 - ll). We m a k e  a similar assignment 
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f o r  the large peak i n  diamond a t  12.2 e V  as ar i s ing  from nearly de- 

generate c r i t i c a l  points (\ - X1) and (1, - &) shown i n  Figure le 

In the present study no defini te  sharp structure was observed 

near 16 eV either i n  reflectance o r  i n  c2. However most of the  l i n e  

i n t e n s i t i e s  between 13 and 19 eV w s e  rather unstable and it is  pos- 

sible that such st ructure  does exist within t h e  experimental uncertainty 

of 59 obtained in this region. It is noted however that the value of 

i n  the high energy t a i l  of the 12.2 e V  peak indicates that a nuuiber 

of t rans i t ions  are t u n g  place. 

s t ructure  calculated by Herman near the  X point it is  observed that  

the separation 3 + XI is ne= 16 e V  and the bands running out from 

t h i s  point along the 1 axis run parallel for  a considerable distance 

which could account fo r  the slow drop off of c2 near 16 eV. 

If one examines the energy band 

mere is evidence for structure near 23 e V  as a small but definite 

maximum was observed i n  reflectance and a l s o  i n  c2. 

responds f a i r l y  w e l l  w i t h  the energy difference Ll+ L1 or  L1+ L 

calculated by Herman which occur near 23 and 24 eV respectively. 

This energy cor- 

3 
The 

symmetry elements at L include inversion which implies that the i n i -  

tial and final states must have opposite parity.  

these t rans i t ion  are not allowed. 

This means t h a t  
2 

However, it niay be f o r  k values 

s l i gh t ly  away from L, where the symmetry operations do not include 

inversion, there are a sufficient number of states available of the 

correct energy t o  explain the maximum i n  E2. 

energy separation i n  the neighborhood of 23 eV appearing i n  Herman's 

work i s  l1 + l1 which i s  about halfway along X + r c  

The only other band 
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If one considers the 

i s  separated by 23 e V  but 

SBC calculation we again f i n d  that L 1 + L1 

4 + L3 i s  mre nearly 25 eV. Another pos- 

s i b i l i t y  however does exist namely X1 -+ X.,. which i s  near 24 eV. 

For an alternative explanation of the 23 e V  peak consider the 

following. Since the 1s core electrons me t igh t ly  bound, it i s  

reasonable t o  assume that U of the  optic& structure observed i n  

this study is due t o  valence electrons. For energies of a few tens of 

electron vol t s  the valence electrons are nearly free and we can thus 

look f o r  energy losses corresponding t o  plasma resonance. The plasma 

frequency w can be estimated using the free electron formula 
P 

where n i s  the appropriate density of electrons. 

when a density of four free electrons per atom i s  used. 

For diamond #b = 31 e V  P 
Figure 15 shows 

a peak i n  the energy loss function near 30 e V  i n  good agreement 
E 

w i t h  the free electron formula. Whetten*' has carried out electron 

energy loss  measurements for  diamond and found a dominant peak near 31 

e V  again i n  good agreement with the present results. It i s  important 

t o  note that Whetten obtainedthe peak at different energies depending 

on various surface treatment. When h is  system had been baked overnight 

with no special cleaning of the diamond surface the dominant energy loss 

is near 23 eV with the 31 eV loss being less prominent. 

hydrogen was  admitted t o  the system and the diamond heated t o  70°C f o r  

However when 

20 minutes the sample after cooling then gave the dominant loss  at 31 

eV with the 23 e V  peak much reduced. It may w e l l  be that the small peak 

i n  9 at 23 e V  i s  due t o  a small amount of surface contamination. 
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It i s  a l so  important t o  note t ha t  whereas Philipp and T a f t 1 7  chose 
1 an extrapolation which would give a prominent peak i n  -firrr neax 31 eV, 

i n  the  method used i n  this work the  30 e V  peak comes out as a matter of 
E 

course with no extrapolation of data outside the  measured range. 

The new results on the  Type I sample w e e  very w e l l  with tha t  of 

F'hilipp and Taf't. 

me& has been obtained between d i f fe ren t  observers measuring the s a w  

type of diamond. Comparing the p lo ts  for  El and E2 of Figure 16 w i t h  

the r e su l t s  of Philipp and Taft one observes that the only real  d i f -  

This i s  the first time t h a t  good quantitative w e e -  

ferences arise near the  7 eV structure i n  E2. 

obtained i n  the present l o w  temperature measurement at 7.3 and 7.8 eV 

is  seen only as a shoulder i n  the work of Philipp and T a f t .  When the  

The doublet s t ructure  

Type IIa results are compared with those of Type I one again observes 

general overall  agreement but smaller peak values of cl and c 2  occur 

i n  the  !Q-pe IIa specimen. The differences i n  the  two types of diamond 

could be due t o  imperfect cleavage of the Type IIa c rys t a l  or  the  

higher impurity content i n  the Type I specimen. 

In  concluding this section mention should be made of the  large 

quantitative differences between previous re f lec t ion  measurements on 

diamond. For example, the maximum of the 12 e V  peak was  observed t o  

be as high as G5$17 and as low as 45$.26 A l ikely explanation of t h i s  

difference i s  indicated by the following observation recorded i n  the 

present work. The values of reflectance on the  Type I sample shown i n  

Figure 14 were obtained after an overnight bake followed by an immediate 

re f lec t ion  measurement. The sample w a s  quickly cooled t o  room temperature 



by pouring s m a l l  amounts o f  liquid nitrogen down the sample holder 

tube and monitoring the sample temperature. Measurements taken 

shortly after an acetone scrub and methanol r inse  of the c rys ta l  

showed a smaller reflectance than when baked. 

l e f t  overnight i n  the reflectometer after r insing but without bake, 

re f lec t ion  values were even lower. 

t o  19 eV varied from a value of 554 reflectance f o r  the baked treat- 

ment to 485 f o r  the rinsed crystal  t o  325 fo r  the sample l e f t  over- 

night. 

fo r  re f lec t ion  measurements and can account f o r  much of the previous 

discrepancy. 

t h i s  contamination during windowless operation. 

When the sample was 

The region of flatness from 15 

It is thus clear  that surface preparation is very c r i t i c a l  

Diffusion pump o i l  vapor i s  the  most l i ke ly  source of 
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V I .  SUMMARY AND CONCLUSION 

Reflection measurements a t  both room and l iquid nitrogen tempera- 

tures have been taken on a polished Type I and both cleaved and pol- 

i e m  'rJrpe IIa diamond crystals i n  the range fran 5.5 t o  11.5 eV. A 

Vacion pupping system was used in t he  low temperature work t o  eliminate 

o i l  cantamination of the crystal surface. Additional roan temperature 

meas-nts up t o  31 e V  were made on the polished Type I and cleaved 

Type IIa crystals. 

Using the ref lect ion results the Kramers-Kronig analysis technique 

was applied t o  determine the phase angle of the r e f l ec t iv i ty .  

other op t ica l  constants of interest such as n, k, E ~ ,  E ~ ,  -1- were 

then calculated. 

and 23 eV was observed and assigned t o  various d i r ec t  interband t r ans i -  

The 
1 
e 

Structure i n  cl  and e2 occurring at  7.3, 7.8, 12.2 

tiom according t o  t he  available band calculations. 

7.8 eV was interpreted as due t o  a possible s h i f t i n g  of the complex 

The new peak at 

energy band structure near the r point o r  as due t o  an exciton some- 

where else i n  the Bril louin zone. 

It is fel t  that while t h i s  work represents a d i s t inc t  advance over 

previous studies it does not represent the def in i t ive  study of diamond. 

Because of the problems with unstable l ight  sources there  s t i l l  ex is t s  

the poss ib i l i ty  of f ine  structure which could yet be resolved. 

7.8 e V  peak presents serious theore t ica l  problems and a careful  examina- 

The new 

t i o n  of the 7 eV region using the powerf'ul electroreflectance method 

could be very rewarding. 
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From the resu l t s  f o r  reflectance with various surface conditions 

alluded t o  in the t ex t  it is believed that knowledge of the c rys t a l  

surface is the most Important aspect of any re f lec t ion  measurement. 

These results indicate that very careful  studies of the e f f ec t  of 

surface preparation on reflectance a re  necessary and in par t icu lar  

the establishment of valid c r i t e r i a  for determining when the  surface 

is t r u l y  chasacter is t ic  of i n t r in s i c  bulk material are needed. 
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